Rules For The Latvian Et Seq Of Lbn 002-15 "būvklimatoloģij"

Original Language Title: Noteikumi par Latvijas būvnormatīvu LBN 003-15 "Būvklimatoloģija"

Read the untranslated law here: https://www.vestnesis.lv/op/2015/125.13


Cabinet of Ministers Regulations No. 338 in 2015 (30 June. No 30 60. §) rules on the Latvian et seq of the LBN 003-15 "Būvklimatoloģij" Issued in accordance with article 5 of the law on construction of the first part of paragraph 3 of rule 1 et seq of Latvia confirmed the LBN 003-15 "Būvklimatoloģij". 2. Projects which are developed in or submitted to the būvvald reconciliation rules for the entry into force of the corresponding period in the normative requirements need not be processed according to the Latvian et seq of LBN 002-15 "Būvklimatoloģij". The Prime Minister is the Rapidity of the Newsletters instead of Minister of Economics, Minister of health of the Ministry of economy Guntis Belēvič submitted version of the approved by the Cabinet of Ministers of 30 June 2015 by Regulation No 338 Latvian et seq of LBN 002-15 "Būvklimatoloģij" et seq 1 determines the climatological indicators applicable for construction structures and their elements. 2. Et SEQ 1. climatological indicators laid down in the annex shall apply to inženierizpēt, in the design and construction of buildings. 3. any geographical point of the climatological indicators for construction purposes within the territory of Latvia is determined by the table in annex 1 et seq of the nearest geographical point klimatoloģisk. 4. characteristics of the Wind and snow load included Eirokodeks national standard annexes: EN EN 1991-1-3:2003/NA: 2015 "Euro code 1. Effects on structures. 1-part 3: General effects. Snow load caused national annex "and LV EN 1991-1-4:2005/NA: 2011" Euro code 1. Effects on structures. 1-part 4: General effects. Wind effects. National annex ". 5. Explanation of the application of the klimatoloģisk provided in this annex 2 et seq. 6. Klimatoloģisk information that is not included in this, according to principal et seq of the technical tasks, on the basis of the corresponding agreement, prepare a public limited liability company "Latvian environment, geology and Meteorology Centre". In place of the Minister of Economics, Minister of health of the Ministry of economy Guntis Belēvič submitted version of annex 1 of the Latvian et seq of LBN 002-15 "Būvklimatoloģij" (approved by Cabinet of Ministers of 30 June 2015 by Regulation No. 338) Klimatoloģisk figures average temperature (° C) table 1 No. PO box Site of the month averaged over the year I II III IV V VI VII VIII IX X XI XII 1. Ainazi-5.0-5.2-1.6 3.9 10.2 14.5 16.5 15.9 11.8 7.3 2.2 2.2 5.7-2. Alūksne-6.8-7.6-0.4-2.5 4.0 11.0 14.8 16.1 15.0 10.2 5.2-4.9 4.5 3. Daugavpils-6.7-5.9-1.8 5.2 12.1 15.7 16.9 15.9 11.2 6.1 1.0-3.8 5.5 4. Dobele-5.0-1.0 4.9 11.4 15.2 16.5 15.9 11.5 6.8 1.7-2.6 5.9 4.7-5. Liepaja-0.3 6.7 3.0-3.0-0.2 4.6 10.3 14.3 16.4 16.4 12.9 8.5 3.7-6. Mērsrags-3.8-4.0-1.4 6.0 1.0 3.9 9.9 14.7 16.3 15.9 11.9 7.4 2.5-7. Priekuļi-5.6-6.2-1.6 4.6 11.3 15.0 16.3 15.4 10.9 6.1 0.7 3.8 5.3-8. Riga-4.7-4.3-0.6 5.1 11.4 15.4 16.9 16.2 11.9 7.2 2.1-2.3 6.2 9. Billboard-4.4-4.5-1.1 4.4 10.7 14.5 15.9 15.3 11.2 6.8 1.8-2.3 5.7 10. Zīlān-6.7-5.9-1.5 5.0 11.9 15.3 16.6 15.6 11.0 6.0 0.7-4.0 5.3 air temperature and the absolute minimum probability (° C) table 2 No. PO box Site of the month the annual minimum temperature of the air, which limits the time I II possible III IV V VI VII VIII IX X XI XII year 50 years 10 years 1. Ainazi-35.3-34.4 35.1-7.5-1.3 2.7 0.2-18.8--4.8-13.8-18.7-37.1-37.1-36.3 33.0-2. Alūksne-37.4-36.8-28.8-15.9-5.8-0.3 2.9 0.7-5.1-10.6-20.6-36.8-37.4-37.4-32.7 3. Daugavpils-the 32.0-18.6 42.7-43.2--1.5-5.5-5.0-1.3 2.1-14.7-24.1-43.2-41.0-35.5 38.7-4. Dobele-34.1-35.9-25.7-13.2-3.7-3.7 0.3 4.7 1.9-9.2-21.7-31.9-35.9-35.9-32.5 5. Liepaja-32.9-31.6-23.8-10.1-4.3 0.5 4.8 4.6-1.7-7.3-17.5-25.8-32.9-31.5-26.1 6. Mērsrags-33.7-28.9-5.4 16.2 36.2---3.9-10.0-2.2 3.3 1.4-18.1-25.4-36.2-34.2-29.9 7. Priekuļi-36.5-38.0-26.4-12.6-0.1-5.4-1.4 3.5-4.5-12.9-20.6-39.0-39.0 38.2-31.8-8. Riga-33.7-34.9-30.3-13.1-5.5-2.3 4.0 0.0-4.1-8.7-18.9-31.9-34.9-34.8-31.0 9. Billboard-34.5-36.1-27.9-15.9-5.4-3.1 2.0-0.2 – 4.5-11.8-16.7-26.0-36.1-34.9-30.0 10. Zīlān-38.5-36.7-32.3-14.4-6.0-0.4 2.7 0.1-6.4-10.9-22.0-35.2-38.2-38.0-33.4 air temperature, absolute maximum and probability (° C) table 3 No. PO box Site of the month maximum temperatures of the year Air, which limits the time I II possible III IV V VI VII VIII IX X XI XII year 50 years 10 years 1. Ainazi 7.3 10.8 17.5 25.1 29.5 33.2 32.7 33.2 30.0 22.0 15.4 10.5 33.2 33.1 31.1 2. Alūksne 7.9 10.9 18.2 26.5 30.2 30.8 33.3 32.9 29.4 21.1 13.1 10.0 33.3 33.2 31.1 3. Daugavpils 7.6 13.1 18.4 27.6 31.8 32.8 35.1 36.4 31.3 24.0 16.3 10.4 36.4 36.0 33.0 4. Dobele 9.5 13.8 20.0 26.1 30.6 33.1 35.8 34.4 30.7 23.5 16.8 11.1 35.8 35.8 32.8 5. Liepaja 7.9 15.5 17.8 25.4 30.0 33.0 33.7 33.6 30.7 22.2 15.4 10.1 33.7 33.0 31.5 6. Mērsrags 9.4 13.6 20.8 26.8 31.6 34.6 34.4 33.8 29.1 24.9 15.5 13.9 34.6 34.7 32.8 7. Priekuļi to 7.9 10.9 17.2 25.9 30.3 32.0 34.0 32.7 29.5 21.5 14.3 9.8 34.0 33.5 31.6 8. Riga 9.4 13.5 20.5 26.5 30.4 32.5 33.6 32.5 29.4 23.4 17.2 11.5 33.6 33.3 32.2 9. Stende 8.5 12.0 18.3 25.8 29.0 32.6 33.6 34.3 29.7 23.5 16.1 10.5 34.3 34.0 31.9 10. Zīlān for The hottest month 7.8 11.8 18.0 26.3 30.0 31.9 34.5 34.3 30.5 22.6 16.6 9.9 34.5 34.4 31.9 average maximum temperature (° C) and the probability table 4 No. PO box Place The hottest monthly average maximum temperature at the hottest monthly average maximum temperature, which can exceed 50 years, once 10 years 1. Ainazi 21.3 24.4 23.2 2. Alūksne 21.9 24.8 23.7 3. Daugavpils 23.3 26.5 25.3 4. Dobele 23.0 26.3 25.0 5. Liepaja 20.9 24.3 23.0 6. Mērsrags 21.5 24.3 23.5 7. Priekuļi to 22.3 25.3 24.2 8. Riga 22.4 25.5 24.3 9. Stende 22.0 25.3 24.2 10. Zīlān in the coldest month 22.9 26.2 25.0 average minimum temperature (° C) and the probability table 5 No. PO box Place the coldest month's average minimum air temperature in the coldest month's average minimum temperature, which can exceed 50 years, once 10 years 1. Ainazi-10.8-19.6-16.8 2. Alūksne-12.4-20.3-17.7 3. Daugavpils-12.3-21.8-18.5 4. Dobele-10.2-18.5-15.7 5. Liepaja-7.5-15.1-12.5 6. Mērsrags-8.8-14.5 18.0-7. Priekuļi-11.0-19.6-16.4 8. Riga-9.7-18.5-15.3 9. Billboard-9.7-17.8-14.6 10. Zīlān-11.4-20.0-16.8 the coldest of the five-day average temperature (° C) and the probability table 6 No. PO box The coldest place in the five-day average temperature of the coldest five days average air temperature and its probability 0.98 0.92 1. Ainazi-23.2-26.8-22.7 2. Alūksne-25.1-29.5-24.0 3. Daugavpils-24.0-28.4-24.1 4. Dobele-22.3-24.4-20.9 5. Liepaja-18.3-20.5-17.3 6. Mērsrags-19.6-22.0-19.3 7. Priekuļi-23.8-28.2-22.7 8. Riga-20.7-24.6-20.7 9. Billboard-19.9-22.5-10 19.5. Zīlān-23.8-26.8-23.2 heating period length and average temperature (° C) table 7 No. PO box Place a 24-hour average temperature of 8 ° C lb period length (days) average temperature (° C) 1. Ainazi 205-0.5 2. Alūksne 214-1.9 3. Daugavpils 205-1.3 4. Dobele 204-0.4 5. Liepaja 0.6 193 6. Mērsrags 0.4 211 7. Priekuļi, 208-8 1.1. Riga 0.0 203 9. Stende 209-0.2 10. Zīlān, 206-1.3 in the medium temperature range (° C) table 8

Nr. PO box Site of the month I II III IV V VI VII VIII IX X XI XII 1. Ainazi 6.0 6.3 6.9 7.8 9.6 10.2 8.2 7.9 7.2 5.8 4.7 5.5 2. Alūksne 5.4 6.1 7.0 8.5 10.4 10.0 9.5 8.7 7.5 5.7 4.1 4.9 3. Daugavpils 6.2 6.9 8.1 9.7 11.8 11.3 10.7 10.6 8.9 7.0 4.5 5.4 4. Dobele 5.9 6.2 7.1 9.1 11.2 11.0 10.8 10.3 9.2 6.9 4.8 5.4 5. Liepaja 5.2 5.4 6.0 6.9 8.3 7.7 6.8 6.8 6.3 5.4 4.4 4.8 6. Mērsrags 5.3 6.0 5.5 7.9 9.5 9.8 9.2 8.1 8.1 6.6 3.9 4.9 7. Priekuļi 5.3 6.1 6.7 8.4 10.6 10.3 9.7 9.1 7.6 5.8 4.2 4.8 in 8. Riga 5.3 5.8 7.0 8.8 12.2 9.9 9.2 8.9 8.0 6.4 4.4 4.8 9. Stende 5.6 6.0 6.9 8.7 10.9 11.0 10.0 9.7 8.3 6.4 4.6 4.9 10. Zīlān of 5.5 6.0 7.2 9.0 11.0 10.8 10.2 10.0 8.5 6.6 4.4 4.7 diurnal average water vapour partial pressure air (HPA) table 9 No. PO box Site of the month averaged over the year I II III IV V VI VII VIII IX X XI XII 1. Ainazi 4.0 3.9 4.4 6.2 9.2 12.8 15.0 14.8 11.6 8.8 6.4 4.8 8.5 2. Alūksne 3.5 3.5 4.2 5.9 8.8 11.8 13.7 13.4 10.5 7.9 5.7 4.2 7.8 3. Daugavpils 3.7 3.7 4.5 6.5 9.8 12.6 14.2 13.9 11.0 8.3 6.1 4.4 8.2 4. Dobele 4.2 4.1 4.7 6.6 9.5 12.6 14.5 14.1 11.3 8.8 6.5 4.8 8.5 5. Liepaja 6 4.6 4.5 5.2 6.7 9.4 12.6 14.9 14.9 12.0 9.5 7.0 5.5 8.9. Mērsrags 4.3 4.2 4.9 6.4 9.2 12.4 14.7 14.5 11.6 8.9 6.7 5.0 8.6 7. Priekuļi to 3.7 3.7 4.4 6.1 9.0 12.0 14.0 13.8 10.9 8.3 6.0 4.4 8.0 8. Riga 4.1 4.0 4.8 6.4 9.3 12.5 14.5 14.3 11.4 8.7 6.4 4.8 8.4 9. The bench has 4.2 4.1 4.8 6.2 8.7 11.7 13.8 13.7 11.1 8.7 6.4 4.9 8.2 10. Zīlān 24-hour average of 3.7 3.7 4.6 6.5 9.8 12.7 14.4 14.1 11.2 8.4 6.1 4.5 8.3 air relative humidity (%)
10. table No. PO box Site of the month averaged over the year I II III IV V VI VII VIII IX X XI XII 1. Ainazi 84 83 80 76 74 78 80 82 83 84 86 86 81 2. Alūksne 87 84 78 71 68 71 75 79 84 87 90 90 80 3. Daugavpils 85 83 79 73 70 72 75 78 83 85 88 88 80 4. Dobele 87 84 81 75 70 73 77 80 83 86 89 89 81 5. Houston 85 84 83 79 76 78 80 80 80 83 85 86 82 6. Mērsrags 85 84 82 79 75 75 79 81 83 84 86 86 82 7. Priekuļi in 85 82 77 72 68 71 76 79 85 86 89 88 80 8. Riga 85 82 79 73 69 72 76 78 81 83 86 86 79 9. Stende 87 85 81 74 69 72 77 79 83 86 89 87 81 10. Zīlān in 87 84 80 75 71 73 78 80 85 87 90 90 82 air relative humidity range (%)
11. table No. PO box Site of the month I II III IV V VI VII VIII IX X XI XII 1. Ainazi 4 6 12 18 22 21 20 20 17 11 5 3 2. Alūksne 3 10 19 26 32 31 32 31 24 15 5 2 3. Daugavpils 6 11 19 30 37 36 35 36 26 18 8 4 4. Houston 3 6 12 18 21 20 19 19 16 12 5 3 5. Mērsrags 3 8 12 20 25 25 25 25 20 14 6 4 6. Priekuļi, 4 9 16 24 31 31 31 31 23 14 6 4 7. Riga 4 8 16 25 28 28 28 27 22 15 6 3 8. Stende 3 9 17 27 34 34 32 32 25 16 6 3 9. Zīlān, 5 10 18 27 34 34 34 34 26 18 8 3 month and annual rainfall amount (mm) 12. table No. PO box Site of the month along the year I II III IV V VI VII VIII IX X XI XII 1. Ainazi 37 25 30 35 43 54 65 76 80 70 71 55 641 2. Alūksne 40 32 36 40 53 74 84 85 70 62 61 54 691 3. Daugavpils 36 27 34 40 51 73 83 74 66 52 52 46 634 4. Dobele 31 22 28 39 43 51 79 76 59 52 55 39 574 5. Seattle 46 31 36 35 40 46 74 80 78 74 83 67 690 6. Mērsrags 38 25 30 37 40 52 72 75 75 60 65 48 618 7. Priekuļi in 31 22 31 40 51 66 90 92 81 64 61 46 674 8. Riga 33 25 31 39 43 61 79 79 76 60 61 49 636 9. Stende 40 26 35 37 42 56 83 79 77 68 70 53 666 10. Zīlān to 39 30 38 42 52 65 75 79 69 58 59 55 662 icing-Frost-sediment weight on 10 mm diameter wire 10 m with different probability 13. table No. PO box Place a weight (g/m), which probably every 2 years 5 years 10 years 15 years 20 years 25 years 30 years 50 years 1. Ainazi 110 180 240 290 330 360 400 490 2. Alūksne 160 220 280 310 340 360 390 450 3. Liepaja 40 80 140 190 230 270 320 430 4. Mērsrags 30 60 100 140 170 200 240 330 5. Priekuļi in 150 210 270 310 340 360 390 450 6. Rezekne 150 280 420 520 620 690 790 1020 7. Riga 80 130 190 240 280 310 350 440 8. Stende 120 200 280 340 390 430 480 590 9. Zīlān in the 110 180 260 320 360 400 450 560 10. Zosēn of the icing layer Regulations 190 320 450 540 630 690 770 950 to 10 mm diameter wire 10 m with different probability table 14 No. PO box Place the icing layer thickness (mm), which probably every 2 years 5 years 10 years 15 years 20 years 25 years 30 years 50 years 1. Ainazi 3.0 4.5 5.5 6.0 6.5 7.0 7.5 8.5 2. Alūksne 4.0 5.0 6.0 6.5 7.0 7.5 7.5 8.0 3. Liepaja 1.5 2.5 3.5 4.5 5.0 5.5 6.0 7.0 4. Mērsrags 1.0 2.0 2.5 3.5 4.0 4.5 5.0 6.5 5. Priekuļi to 4.0 5.0 6.0 6.5 7.0 7.5 8.0 8.5 6. Rezekne 4.0 6.0 8.0 9.5 11.0 12.0 13.0 15.0 7. Riga 2.0 3.5 4.5 5.0 5.5 6.0 6.5 7.5 8. Stende 3.0 4.5 6.0 7.0 7.5 8.5 9.0 10.5 9. Zīlān for 3.0 4.5 6.0 7.0 7.5 8.5 9.0 10.5 10. Zosēn, 4.5 6.5 8.5 9.5 10.5 11.5 12.0 13.5 figure 1 bottom permafrost depth natural conditions on the last day of the month 15. table No. PO box Place the average permafrost depth maximum depth of permafrost X XI XII I II III IV 1 highest average. Ainazi * 18 32 45 38 53 113 2. Alūksne * 9 22 38 42 36 48 95 3. Daugavpils * 12 35 62 70 51 78 134 4. Dobele ** 8 17 22 17 24 88 5. Mērsrags * 2 14 28 31 23 41 116 6. Liepaja * * 34 87 7 9 23 26. Priekuļi ** * 11 20 22 18 26 61 8. Riga * 7 15 18 13 24 47 9. Stende ** * 12 24 27 22 36 128 10. Zīlān * 7 21 38 43 40 48 112 * Note: bottom permafrost in a given month is less than 50% of the selected year.

Figure 2 Figure 3 Figure 4 solar radiation on different oriented surfaces clear day in July (MJ/m ²) table 16

Nr. PO box The Radio station-in form of information for the time interval (in hours) (solar time) 24-hour amount 3-4 4-5 5-7 6-7 7-8 7-9 9-10 10-11-12 13-14 12-13 14-15 16 17 15-16-17-18-18-19-20-21 19 20 Horizontal surface 1. Riga direct 0.02 0.21 0.52 0.94 1.34 1.73 2.09 2.39 2.53 2.53 2.39 2.09 1.73 1.34 0.94 0.52 0.21 0.02 23.54 summary 0.04 0.34 0.77 1.20 1.65 2.02 2.45 2.75 2.89 2.89 2.75 2.45 2.02 1.60 1.14 0.72 0.34 0.04 28.06 2. Zosēn 0.02 0.18 0.47 0.86 1.26 1.66 2.05 2.45 2.63 2.63 2.48 2.20 1.80 1.33 0.86 0.43 0.18 0.04 23.53 summary directly south oriented 0.03 0.32 0.70 1.19 1.66 2.16 2.52 2.88 3.06 3.06 2.88 2.59 2.20 1.69 1.19 0.68 0.32 0.05 29.18 vertical surface 3. In Riga--------0.27 0.80 1.27 1.63 1.84 1.84 1.65 1.29 0.81 0.27 11.67 total 0.01 0.10 0.20 0.25 0.59 1.16 1.70 2.09 2.31 2.31 2.10 1.72 1.16 0.56 0.21 0.17 0.10 0.01 16.75 4. Zosēn directly--------11.30 0.25 0.76 1.22 1.60 1.80 1.80 1.60 1.24 0.77 0.25 Summary 0.01 0.11 0.19 0.29 0.63 1.25 1.74 2.13 2.35 2.35 2.11 1.72 1.21 0.62 0.29 0.20 0.11 0.01 17.33 West oriented vertical surface 5. In Riga---------0.39 1.13 1.75 2.18 2.39 2.30 1.91 0.99 0.24 13.28 summary 0.01 0.10 0.20 0.25 0.32 0.37 0.43 0.46 0.47 0.86 1.58 2.17 2.52 2.68 2.52 2.08 1.09 0.25 18.36 6. Zosēn directly---------0.38 1.09 1.67 2.07 2.20 2.09 1.69 0.99 0.13 12.31 summary 0.01 0.11 0.19 0.29 0.38 0.49 0.51 0.53 0.55 0.93 1.60 2.15 2.51 2.56 2.38 1.89 1.10 0.14 18.35 East oriented vertical surface 7. In Riga-0.24 0.99 1.91 2.30 2.39 2.18 1.75 1.13 0.39------0.25 1.09 2.08 2.52 2.68 2.52 2.17 1.58 0.86 0.47 0.46 0.43 0.37 0.32 0.25 0.20 0.10 0.01 18.36 13.28 summary 8. Zosēn-0.13 0.99 1.69 2.09 2.20 2.07 1.67 1.09 0.38 directly--------12.31 summary 0.14 1.10 1.89 2.38 2.58 2.56 2.18 1.62 0.93 0.55 0.51 0.48 0.44 0.37 0.29 0.20 0.11 0.01 18.35 average and highest temperature 0 ° C, the depth of the soil depth table 17 (cm) month XI XII III IV I average 36 67 79 78 27 Daugavpils * largest * 56 104 133 144 142 96 Gulbene average 12 23 27 29 17 44 48 65 73 80 80 biggest Riga Average ** 11 14 19 20 38 48 63 80 80 * the largest Stands of average ** Zosēn * 28 36 35 26 56 103 118 138 135 highest average at most 39 42 73 73 73 58 13 22 23 20 * Note: * the month the soil temperature is below 0 ° C in less than 50% of the year. In place of the Minister of Economics, Minister of health of Guntis Belēvič

  Submitted to the Ministry of the economy version of the annex 2 to the Latvian et seq LBN 003-15 "Būvklimatoloģij" (approved by Cabinet of Ministers of 30 June 2015 by Regulation No 338) explanation of the application of klimatoloģisk 1 table 1 "average temperature (o C)" provides information for months, and the average annual air temperature, the World Meteorological Organization (hereinafter referred to as the Organization) a 30-year period (1961-1990) average. The probability that temperatures on average 0.5, i.e. they can occur on average once every two years. 2. table 2 "air temperature and the absolute minimum probability (o C)". Each monthly air temperature absolute minimum is around the observation during a particular month, the station registered the lowest air temperature. Annual air temperature absolute minimum is the lowest of the year air temperature. Annual minimum temperature of absolute probability described with temperatures that can exceed 50 years, the time (in this case, the probability that the absolute minimum temperature will not exceed this value is 0.98) and every 10 years (probability-0.90). 3. table 3 "absolute maximum temperature and the probability (o C)". Each month the absolute maximum temperature is around the observation during a particular month, the station registered the highest temperature. Annual air temperature the absolute maximum is the highest annual air temperature. Annual absolute maximum temperature of the probability that the described with temperatures exceeding 50 years of time possible (in this case, the probability that the absolute maximum temperature does not exceed this value is 0.98) and every 10 years (probability-0.90). 4. table 4 "Most hottest monthly average maximum temperature (o C) and its probability". Each year, the hottest month in the average maximum temperature is calculated as all the hottest day of the month the absolute maximum temperature of the arithmetic mean. The proportion of the average maximum temperature is a station of the observation period the average value. Its probability is 0.5, i.e. it can occur on average once every two years. The hottest month average maximum temperature of probability in addition characterised by temperatures that can exceed 50 years, the time (in this case, the probability that the annual average maximum temperature does not exceed this value is 0.98) and every 10 years (probability-0.90). 5. table 5 "The coldest average monthly minimum temperature (o C) and its probability". Each year the coldest monthly average minimum temperature is calculated as all the coldest day of the month the absolute minimum temperature averages. The proportion of the average minimum temperature is a station of the observation period the average value. Its probability is 0.5, i.e. it can occur on average once every two years. The coldest monthly average minimum temperature, probability of addition described with temperatures that can exceed 50 years, the time (in this case, the probability that the annual average maximum temperature does not exceed this value is 0.98) and every 10 years (probability-0.90). 6. table 6 "the coldest of the five-day average temperature (o C) and its probability". The work of each station the last approximately 50 in each cold season found at one of the coldest five other subsequent day period and calculated its average temperature. The coldest day in the five perennial average temperature is calculated as the arithmetic mean, given the eight most coldest period of five days (16% of the entire data row season) air temperature. Is calculated at five coldest daily mean air temperature values the probability levels such as 0.98 and 0.92. the probability that twynham surroundings the coldest of the five-day average temperature will not exceed-26.8 ° C is 0.98; Once in 50 years (probability-0.02) possible even lower temperatures. 7. table 7 ' heating period length and average temperature (o C) ". The heating period is considered the time when daily average air temperature is equal to the o C or lower 8.0. Heating characteristics of the period calculated for the Organization's 30-year data period (1961-1990). Each data row in the cold season found the dates 24-hour average temperature becomes stable in the autumn of the same or lower than o C and 8.0 spring steadily higher than 8.0 o c. Calculate the number of days between these dates (the current cold season heating period), as well as the calculated 24-hour average air temperature. The average duration of the period of heating is all the data rows of the heating periods the season's average. Average air temperature of heating period is all rows of data daily average air temperature sum divided by year and number of days. 8. table 8 "average air temperature (o C) the amplitude". Each month the average amplitude of temperature is calculated as a monthly average maximum and average minimum air temperature difference. Data calculated for the Organization's 30-year period (1961-1990). 9. table 9 "24-hour average water vapour partial pressure air (HPA)". Characteristics of air moisture-water vapor partial pressure is the pressure-what would be, if water vapour temperature and atmosphere alone occupied the volume it occupies moist air. Calculate average data for the Organization's 30-year period (1961-1990). 10. table 10 "daily mean relative humidity (%)". Relative humidity is the percentage of a given temperature and the atmosphere in the partial pressure of water vapor to the saturated water vapor partial pressure at the same temperature and atmosphere. Relative humidity of the air-saturation of the nature with water vapour. Calculate average data for the Organization's 30-year period (1961-1990). 11. table 11 "air relative humidity range%". 24-hour over the relative humidity is typically highest is before sunrise and the lowest-in the afternoon. Therefore, a more precise calculation of amplitude for the chosen data period of 30 years, from 1966, when the meteorological stations in the four term site was launched eight term observations. Air relative humidity range is calculated as a monthly average air relative humidity difference between the 3 o'clock and 12 o'clock Greenwich mean time on average (at 5 (6) and at 14 (15) after Latvia's winter (summer) time). 12. table 12 "monthly and annual rainfall amount (mm)". The term "precipitation" include liquid, solid and mixed atmosphere, as well as a strong race, Frost, Frost and fog caused the fallout. Rainfall is measured in millimetres: meteorology 1 mm thick water layer occurs, spilling a 1 litre of water per 1 m2 for a horizontal surface, the water not flowing up, and evaporation through seepage. Calculate average data for the Organization's 30-year period (1961-1990). 13.13. table "icing-Frost-sediment weight on 10 mm diameter wire 10 m with different probability", table 14 "regulatory icing layer for 10 mm diameter wire 10 m with different probability". Weather station used in the icing-Frost-sediment to 5 mm diameter wire 2 m maximum size and maximum weight the results of observations made every winter during the period from 1951 until 1998. After the appropriate methodology in sediment weight recalculated to 10 mm diameter wire 10 m in height, the icing layer-to 10 mm diameter wire 10 m if the maximum density of the sediment is 0.9 g/cm3. The purpose of this icing layer construction called regulations. climatology 14. Figure 1. "territory of Latvia by legislative icing layer". We used data on the breakdown of the icing layer thickness of 10 mm diameter wire 10 m in height, which may once in 10 years. Examples in Latvia, icing regions can be characterized by the following parameters: PO box Characteristics that potentially every 10 years the icing region I II 1. Regulations of the icing layer thickness (mm) variation range 2.5-7.4 7.5-12.4 2. The average regulatory icing layer thickness (mm) 5 10 3. Icing-Frost-sediment weight (g/m) on the wire with a diameter of 10 mm, 10 m range of change 90-370 370-800 4. Medium icing-Frost-sediment mass (g/m) on the wire with a diameter of 10 mm, 10 m 210 570

15. table 15 "bottom depth of permafrost under natural conditions on the last day of the month". On the Organization's 30-year period (1961-1990) estimated average soil depth of permafrost, the last day of each month under natural soil overlying surface at the actual thickness of the snow cover. Each winter to find the maximum depth of permafrost, and set it in the middle and the greatest value. 16. Figure 2 Loamy soil of the "regulatory permafrost depth, which is probably once every two years (cm)" 3 "the soil Loamy regulatory permafrost depth made possible every 10 years (cm) and" Figure 4 "Loamy soil of the permafrost depth regulations, which might once in a 100 years (cm)". Bottom maximum permafrost depth of characterization used in the regulatory bottom permafrost depth. The bottom of the depth of the permafrost is normative cold season snow-coated bottom permafrost depth maximum average. To determine the bottom of the depth of the permafrost, was made specifically for bottom permafrost observations of snow-free areas and specific quantitative relationship with stable negative temperature. Using the relationship and found steady negative temperature sum for each winter from 1923 until 1998, were calculated by the regulatory bottom permafrost depth values that exceeded the possible every two years (probability that the regulatory bottom permafrost depth will not exceed this value is 0.50) every 10 years (probability-0.90), once in 100 years (probability-0.99). These characteristics are calculated for the loamy soils. After the evaluation of the diversity of soils in 56% of Latvia is loamy soil, 36%-sandy and about 8%-peaty soil. Sandy loamy soil deeper than freezes. The depth of the permafrost soil regulations on the determination of sandy soils loamy soils can use characteristics using a factor of 1.2. Exposed sandy soil depth of permafrost, special observation confirms the correctness of this factor. 17. table 16 "solar radiation on different oriented surfaces clear day in July (MJ/m ²)". The table provides information about the direct and total (direct and diffuse radiation) exposure hours and 24-hour (MJ/m2) on a horizontal surface and to the South, West and East oriented vertical surfaces of the year at the hottest month-July. The amount of radiation an hour divided by 3.6, you can calculate the average energy of light (radiation intensity, kW/m2). Over the years, the solar radiation observation in Latvia is carried out in different places. Riga in Latvia nature observations, Metropolitan, rural districts zosēni-elevated terrain. 18. table 17 "mean and the largest 0 o C temperature, the depth of the soil". Zero-depth soil temperature is calculated using the results of observations of temperature depth up to 3.2 m organization's 30-year period (1961-1990). These thermometers placed under natural soil overlying surface (summer-grass, winter-snow cover). The temperature used for the calculation of interpolation method. In place of the Minister of Economics, Minister of health of Guntis Belēvič